On the inverse problem of reflection Green’s function seismograms over stratified acoustic media: Estimation of background models

Author:

Amundsen Lasse1ORCID

Affiliation:

1. Equinor Research Centre, Trondheim N-7005, Norway and The Norwegian University of Science and Technology, Department of Geoscience and Petroleum, Trondheim N-7000, Norway.(corresponding author).

Abstract

A theory is presented for estimating the background velocity and density of an acoustic stratified medium by iterative least-squares waveform inversion in the frequency-horizontal slowness domain of low-frequency precritical reflection incidence seismograms of time length [Formula: see text]. The initial model is constant. The prerequisites for the method are that the reflection seismograms should be Green’s function seismograms and that the fundamental frequency component [Formula: see text] is present. Then, the gradients of the objective function provide the low-wavenumber trend of the medium. A matrix formulation for the model update is expressed mathematically by the classic seismogram residual, Jacobian, gradient, and Hessian in the Levenberg-Marquardt approximation. The first iteration, which is equal to a constant-parameter migration inversion (CPMI), is thoroughly analyzed, and expressions for band-limited gradients and block Hessians are found. For primary precritical reflection incidence seismograms of infinite bandwidth, it is shown theoretically that the partial gradients in the CPMI model become a reflection strength-weighted sum of shifted discrete sign functions, typical of step or staircase functions, which provide interface locations in Born depth and amplitudes that can be mapped to velocity and density information. For frequency-band-limited primary reflection seismograms, the partial gradients become a reflection strength-weighted sum of wavenumber-band-limited discrete sign functions. When the fundamental frequency component in the seismograms is present, the band-limited discrete sign functions are oscillatory but keep the information of the step function characteristic of the partial gradient. When the fundamental frequency component in the seismograms is absent, the band-limited discrete sign functions keep information of where the steps are located but lose the information of the amplitudes of the steps. The Hessian elements are nonstandard with the Hessian modeled over a broader frequency range than the frequencies of the observed low-frequency seismogram to avoid it becoming close to singular. The main mathematical findings are illustrated by a simple model and seismograms, for which the background models are found after two iterations. For the sake of completeness, the background models are classically used as initial models in a Levenberg-Marquardt least-squares inversion scheme to estimate the layer velocities and densities from broadband seismograms.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3