A theoretical contribution to the 1D inverse problem of reflection seismograms

Author:

Amundsen Lasse1ORCID

Affiliation:

1. Equinor Research Centre, Trondheim, Norway and The Norwegian University of Science and Technology, Department of Geoscience and Petroleum, Trondheim N-7053, Norway.(corresponding author).

Abstract

Least-squares full-waveform inversion (FWI) is considered in the frequency domain for a set of noise-free observations of time length [Formula: see text] at the surface obeying the 1D wave equation, with a known source. The initial model is of constant velocity. The first iteration, which equals the constant-velocity migration inversion (CVMI), is thoroughly analyzed. In CVMI, for the unit source power spectrum, it is within reach to analytically derive and interpret the mathematical formulas of the first-order partial derivatives of the modeled observations (Jacobian), and the gradient and Gauss-Newton Hessian of the objective function, and learn what information the calculation requires to obtain a successful physical result (i.e., velocity update). We recognize the gradient elements, except the last one, to be sums of reflection-amplitude weighted band-limited sign functions and the Hessian elements, except along the last column and row, to be band-limited, diagonal-centered triangle functions, which for infinite bandwidth reduces to the Kronecker delta function. When the fundamental frequency [Formula: see text] is lacking in the observations, the gradient loses information of the low-wavenumber trend of the velocity update. The Hessian becomes close to singular, and any stabilized inverse has no chance to repair the deficiencies of the gradient caused by any missing low frequency in the observations. FWI is started by applying CVMI. First, Jacobians are modeled by classic reflectivity modeling. Second, the diagonal Hessians can be used for estimating discrete velocity updates. Third, the Jacobian can be modeled in the first-order Wentzel-Kramers-Brillouin-Jeffreys (WKBJ) approximation and by neglecting transmission effects. Finally, single-frequency and low-frequency seismograms can be inverted by using broadband Hessians. The main mathematical findings are developed by simple numerical models and data.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3