Integrating neural networks in least-squares inversion of airborne time-domain electromagnetic data

Author:

Asif Muhammad Rizwan1ORCID,Foged Nikolaj2,Maurya Pradip Kumar2ORCID,Grombacher Denys James2ORCID,Christiansen Anders Vest2ORCID,Auken Esben2,Larsen Jakob Juul3ORCID

Affiliation:

1. Aarhus University, Department of Geoscience, HydroGeophysics Group (HGG), Aarhus, Denmark and Aarhus University, Department of Electrical and Computer Engineering, Aarhus, Denmark. (corresponding author)

2. Aarhus University, Department of Geoscience, HydroGeophysics Group (HGG), Aarhus, Denmark.

3. Aarhus University, Department of Electrical and Computer Engineering, Aarhus, Denmark.

Abstract

Airborne time-domain electromagnetic surveys produce extremely large data sets with thousands of line kilometers of data and millions of possible models to explain the data. Inversion of such data sets to obtain the resistivity structures of the subsurface is computationally intensive and involves calculation of a significant number of forward and derivative responses for solving the least-squares inverse problem. The flight altitude of the airborne system needs to be included in the modeling, which adds further complexity. We propose to integrate neural networks in a damped iterative least-squares inversion framework to expedite the inversion process. We train two separate neural networks to predict the forward responses and partial derivatives independently for a broad range of resistivity structures and flight altitudes. Data inversion is not only used for producing the final subsurface models but also used during data processing, or to produce intermediate results during a survey. With these purposes in mind, we provide three inversion schemes with a tunable balance between computational time and modeling accuracy: (1) numerical forward responses used initially in combination with neural network derivatives, and the derivatives switched to a numerical solution in final iterations, (2) numerical forward responses in combination with neural network derivatives used throughout the inversion, and (3) only neural network forward responses and derivatives used in inversion. Experiments on field data find that we improve inversion speed without any loss in modeling accuracy with our first approach, whereas the second scheme gives a significant speedup at the cost of minor and often acceptable deviations in the inversion results from the conventional nonlinear inversion. The last approach is the fastest and captures the overall resistivity structures quite well. Therefore, depending on the modeling accuracy, inversion speedup factors of up to 50 are realized by using the proposed schemes.

Funder

Miljøstyrelsen

Innovationsfonden

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3