Transient electromagnetic inversion to image the shallow subsurface based on convolutional bidirectional long short-term memory neural networks

Author:

Shi Yu1ORCID,Zhang Jifeng1234,You Xiran1,Ma Ziben1,Li Jiachen1

Affiliation:

1. Department of Geophysics, School of Geological Engineering and Geomatics, Chang'an University , Xi'an 710054 , China

2. Key Laboratory of Mine Geological Hazards Mechanism and Control, Ministry of Natural Resources , Xi'an 710054 , China

3. National Engineering Research Center of Offshore Oil and Gas Exploration , No. 6 Courtyard, Taiyanggong South Street, Chaoyang District, Beijing 100028 , China

4. Integrated Geophysical Simulation Lab of Chang'an University (Key Laboratory of Chinese Geophysical Society) , Xi'an 710054 , China

Abstract

SUMMARY The conventional transient electromagnetic inversion method has a low calculation speed and precision and is susceptible to falling into local minima, which does not meet the fine detection requirements of urban underground space. In this study, we proposed a novel inversion method based on convolutional bidirectional long short-term memory neural networks for shallow subsurface transient electromagnetic inversion. This network structure possessed strong spatial feature extraction capabilities and a proficient understanding of sequential data, thereby addressing the issues of slow conventional inversion computations and inadequate inversion accuracy. Utilizing the apparent resistivity from a three-layer model as the sample input and the real model as the target, the network was trained using batch normalization and dropout techniques to accelerate the convergence rate. The resulting model achieved real-time inversion speeds and high accuracy, with robust generalization capabilities and adaptability to new data. To assess the inversion performance, we used a novel 1-D inversion error calculation index, the correlation area loss error, for a more accurate measurement. Numerical simulation experiments showed that the proposed method required only 2.121 s to invert data from 100 observation points. The inversion efficiency was significantly superior to the conventional methods, maintaining excellent accuracy while effectively discerning subsurface electrical stratification in geophysics. Applying convolutional bidirectional long short-term memory neural networks to multidimensional and field data yielded results superior to those of conventional inversion, demonstrating the promising applicability and generalization of this approach. This study offers an efficient solution for shallow subsurface transient electromagnetic exploration and holds potential for application in other areas.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3