High-amplitude noise detection by the expectation-maximization algorithm with application to swell-noise attenuation

Author:

Bekara Maïza12,van der Baan Mirko12

Affiliation:

1. Petroleum Geo-Services, Weybridge, United Kingdom. .

2. University of Alberta, Department of Physics, Edmonton, Alberta, Canada. .

Abstract

High-amplitude noise is a common problem in seismic data. Current filtering techniques that target this problem first detect the location of the noise and then remove it by damping or interpolation. Detection is done conventionally by comparing individual data amplitudes in a certain domain to a user-controlled local threshold. In practice, the threshold is optimally tuned by trial and error and is often changed to match the varying noise power across the data set. We have developed an automatic method to compute the appropriate threshold for high-amplitude noise detection and attenuation. The main idea is to exploit differences in statistical properties between noise and signal amplitudes to construct a detection criterion. A model that consists of a mixtureof two statistical distributions, representing the signal and the noise, is fitted to the data. Then it is used to estimate the probability (i.e., likelihood) that each sample in the data is noisy by means of an expectation-maximization (EM) algorithm. Only those samples with a likelihood greater than a specific threshold are considered to be noise. The resulting probability threshold is better adapted to the data compared to a conventional amplitude threshold. It offers the user, through the probability threshold value, the possibility to quantify the confidence in whether a large amplitude anomaly is considered as noise. The method is generic; however, our work develops and implements the method for swell-noise attenuation. Initial results are encouraging, showing slightly better performance than an optimized conventional method but with much less parameter testing and variation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3