U-Net with Asymmetric Convolution Blocks for Road Traffic Noise Attenuation in Seismic Data

Author:

Zhu Zhaolin1ORCID,Chen Xin2,Cao Danping2,Cheng Mingxin13,Ding Shuaimin13

Affiliation:

1. Hainan Institute of Zhejiang University, Sanya 572024, China

2. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China

3. Advanced Technology Institute of Zhejiang University, Hangzhou 310027, China

Abstract

Road traffic noise is a special kind of high amplitude noise in seismic or acoustic data acquisition around a road network. It is a mixture of several surface waves with different dispersion and harmonic waves. Road traffic noise is mainly generated by passing vehicles on a road. The geophones near the road will record the noise while receiving the seismic signal. The amplitude of the traffic noise is much larger than the signal, which masks the effective information and degrades the quality of acquired data. At the same time, the traffic noise is coupled with the effective signal, which makes it difficult to separate them. Therefore, attenuating traffic noise is the key to improving the quality of the final processing results. In recent years, denoising methods based on convolution neural networks (CNN) have shown good performance in noise attenuation. These denoising methods can learn the potential characteristics of acquired data, thus establishing the mapping relationship between the original data and the effective signal or noise. Here, we introduce a method combining UNet networks with asymmetric convolution blocks (ACBs) for traffic noise attenuation, and the network is called the ACB-UNet. The ACB-UNet is a supervised deep learning method, which can obtain the distribution characteristics of noise and effective signal through learning the training data and then effectively separate the two to achieve noise removal. To validate the performance of the proposed method, we apply it to synthetic and real data. The data tests show that the ACB-UNet can obtain good results for high amplitude noise attenuation and is practical and efficient.

Funder

Hainan Provincial Natural Science Foundation of China

Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City

Hainan institute Foundation of Zhejiang University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3