Seismic Periodic Noise Attenuation Based on Sparse Representation Using a Noise Dictionary

Author:

Sun Lixia1,Qiu Xinming2ORCID,Wang Yun2,Wang Chao3

Affiliation:

1. SINOPEC Research Institute of Petroleum Engineering Co., Ltd., Beijing 102206, China

2. School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China

3. The State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China

Abstract

Periodic noise is a well-known problem in seismic exploration, caused by power lines, pump jacks, engine operation, or other interferences. It contaminates seismic data and affects subsequent processing and interpretation. The conventional methods to attenuate periodic noise are notch filtering and some model-based methods. However, these methods either simultaneously attenuate noise and seismic events around the same frequencies, or need expensive computation time. In this work, a new method is proposed to attenuate periodic noise based on sparse representation. We use a noise dictionary to sparsely represent periodic noise. The noise dictionary is constructed based on ambient noise. An advantage of our method is that it can automatically suppress monochromatic periodic noise, multitoned periodic noise and even periodic noise with complex waveforms without pre-known noise frequencies. In addition, the method does not result in any notches in the spectrum. Synthetic and field examples demonstrate that our method can effectively subtract periodic noise from raw seismic data without damaging the useful seismic signal.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference25 articles.

1. Seismic exploration random noise on land: Modeling and application to noise suppression;Li;IEEE Trans. Geosci. Remote Sens.,2017

2. Simulation of seismic-prospecting random noise in the desert by a brownian-motion-based parametric modeling algorithm;Zhong;Comptes Rendus Geosci.,2019

3. Time domain classification and quantification of seismic noise in an urban environment;Groos;Geophys. J. Int.,2009

4. Monochromatic noise removal via sparsity-enabled signal decomposition method;Xu;IEEE Geosci. Remote Sens. Lett.,2013

5. Harmonic noise reduction opens the way for array size reduction in vibroseis™ operations;Meunier;In Seg Tech. Program Expand. Abstr.,2002

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3