Joint inversion of seismic data for acoustic impedance

Author:

Fu Li‐Yun1

Affiliation:

1. Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China.

Abstract

I propose a joint inversion scheme to integrate seismic data, well data, and geological knowledge for acoustic impedance estimation. I examine the problem of recovering acoustic impedance from band‐limited seismic data. Optimal estimation of impedance can be achieved by combined applications of model‐based and deconvolution‐based methods. I incorporate the Robinson seismic convolutional model (RSCM) into the Caianiello neural network for network mapping. The Caianiello neural network provides an efficient approach to decompose the seismic wavelet and its inverse. The joint inversion consists of four steps: (1) multistage seismic inverse wavelets (MSIW) extraction at the wells, (2) the deconvolution with MSIW for initial impedance estimation, (3) multistage seismic wavelets (MSW) extraction at the wells, and (4) the model‐based reconstruction of impedance with MSW for improving the initial impedance model. The Caianiello neural network offers two algorithms for the four‐step process: neural wavelet estimation and input signal reconstruction. The frequency‐domain implementation of the algorithms enables control of the inversion on different frequency scales and facilitates an understanding of reservoir behavior on different resolution scales. The test results show that, with well control, the joint inversion can significantly improve the spatial description of reservoirs in data sets involving complex continental deposits.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3