Linearized wave-equation migration velocity analysis by image warping

Author:

Perrone Francesco1,Sava Paul1,Andreoletti Clara2,Bienati Nicola2

Affiliation:

1. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA..

2. Eni S.p.A. — E&P Div., AESI Dept., San Donato Milanese, Italy..

Abstract

Seismic imaging produces images of contrasts in physical parameters in the subsurface, e.g., velocity or impedance. To build such images, a background model describing the wave kinematics in the earth is necessary. In practice, the structural image and background velocity model are unknown and have to be estimated from the acquired data. Migration velocity analysis deals with estimation of the background model in the framework of seismic migration and relies on two main elements: data redundancy and invariance of the structures with respect to different seismic experiments. Because all the experiments probe the same model, the reflectors must be invariant in suitable domains (e.g., shots or reflection angle); the semblance principle is the tool used to measure the invariance of a set of multiple images. We measure the similarity of the structural features between pairs of single-shot migrated images obtained from adjacent experiments. By using the estimated warping vector field between two migrated images, we construct an image perturbation which describes the difference in reflectivity observed by two shots. We derive an expression for the image perturbation that drives a migration velocity analysis procedure based on a linearization of the wave-equation with respect to the model parameters. Synthetic 2D examples show promising results in retrieving errors in the velocity model. This methodology can be directly applied to 3D.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3