Nonlinear scattering based imaging in elastic media: Theory, theorems, and imaging conditions

Author:

Ravasi Matteo1,Curtis Andrew1

Affiliation:

1. The University of Edinburgh, School of GeoSciences, Grant Institute, Kings Buildings, Edinburgh, UK..

Abstract

With the more widespread introduction of multicomponent recording devices in land and marine ocean-bottom seismic acquisition, elastic imaging may become mainstream in coming years. We have derived new, nonlinear, elastic imaging conditions. A correlation-type representation theorem for perturbed elastic media, commonly used in seismic interferometry to explain how a scattered wave response between two receivers/sources may be predicted given a boundary of sources/receivers, can be considered as a starting point for the derivation. Here, we use this theorem to derive and interpret imaging conditions for elastic migration by wavefield extrapolation (e.g., elastic reverse-time migration). Some approximations lead to a known, heuristically derived imaging condition that crosscorrelates P- and S-wave potentials that are separated in the subsurface after full-wavefield extrapolation. This formal connection reveals that the nonapproximated correlation-type representation theorem can be interpreted as a nonlinear imaging condition, that accounts also for multiply scattered and multiply converted waves, properly focusing such energy at each image point. We present a synthetic data example using either an ideal (acquisition on a full, closed boundary) or a real (partial boundary) seismic exploration survey, and we demonstrate the importance of nonlinearities in pure- and converted-mode imaging. In PP imaging, they result in better illumination and artifact reduction, whereas in PS imaging they show how zero time-lag and zero space-lag crosscorrelation imaging conditions are not ideal for imaging of converted-mode waves because no conversion arises from zero-offset experiments.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3