Attenuating multiple-related imaging artifacts using combined imaging conditions

Author:

da Costa Filho Carlos Alberto1,Curtis Andrew1

Affiliation:

1. University of Edinburgh, Grant Institute, Edinburgh, UK..

Abstract

The objective of prestack depth migration is to position reflectors at their correct subsurface locations. However, migration methods often also generate artifacts along with physical reflectors, which hamper interpretation. These spurious reflectors often appear at different spatial locations in the image depending on which migration method is used. Therefore, we have devised a postimaging filter that combines two imaging conditions to preserve their similarities and to attenuate their differences. The imaging filter is based on combining the two constituent images and their envelopes that were obtained from the complex vertical traces of the images. We have used the method to combine two images resulting from different migration schemes, which produce dissimilar artifacts: a conventional migration method (equivalent to reverse time migration) and a deconvolution-based imaging method. We show how this combination may be exploited to attenuate migration artifacts in a final image. A synthetic model containing a syncline and stochastically generated small-scale heterogeneities in the velocity and density distributions was used for the numerical example. We compared the images in detail at two locations where spurious events arose and also at a true reflector. We found that the combined imaging condition has significantly fewer artifacts than either constituent image individually.

Funder

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3