Autofocus Imaging: Image reconstruction based on inverse scattering theory

Author:

Behura Jyoti1,Wapenaar Kees2,Snieder Roel3

Affiliation:

1. Formerly Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA; presently Seismic Science LLC, Littleton, Colorado, USA..

2. Delft University of Technology, Department of Geoscience and Engineering, Delft, Netherlands..

3. Colorado School of Mines, Department of Geophysics, Golden, Colorado, USA..

Abstract

Conventional imaging algorithms assume single scattering and therefore cannot image multiply scattered waves correctly. The multiply scattered events in the data are imaged at incorrect locations resulting in spurious subsurface structures and erroneous interpretation. This drawback of current migration/imaging algorithms is especially problematic for regions where illumination is poor (e.g., subsalt), in which the spurious events can mask true structure. Here we discuss an imaging technique that not only images primaries but also internal multiples accurately. Using only surface-reflection data and direct-arrivals, we generate the up- and down-going wavefields at every image point in the subsurface. An imaging condition is applied to these up- and down-going wavefields directly to generate the image. Because the above algorithm is based on inverse-scattering theory, the reconstructed wavefields are accurate and contain multiply scattered energy in addition to the primary event. As corroborated by our synthetic examples, imaging of these multiply scattered energy helps eliminate spurious reflectors in the image. Other advantages of this imaging algorithm over existing imaging algorithms include more accurate amplitudes, target-oriented imaging, and a highly parallelizable algorithm.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3