Seismic characterization of fractured reservoirs by focusing Gaussian beams

Author:

Zheng Yingcai1,Fang Xinding1,Fehler Michael C.1,Burns Daniel R.1

Affiliation:

1. Massachusetts Institute of Technology, Earth Resources Laboratory, Department of Earth, Atmospheric and Planetary Sciences, Cambridge, Massachusetts, USA..

Abstract

Naturally fractured reservoirs occur worldwide, and they account for the bulk of global oil production. The most important impact of fractures is their influence on fluid flow. To maximize oil production, the characterization of a fractured reservoir at the scale of an oil field is very important. For fluid transport, the critical parameters are connectivity and transmittivity plus orientation. These can be related to fracture spacing, compliance, and orientation, which are the critical seismic parameters of rock physics models. We discovered a new seismic technique that can invert for the spatially dependent fracture orientation, spacing, and compliance, using surface seismic data. Unlike most seismic methods that rely on using singly scattered/diffracted waves whose signal-to-noise ratios are usually very low, we found that waves multiply scattered by fractures can be energetic. The direction information of the fracture multiply scattered waves contains fracture orientation and spacing information, and the amplitude of these waves gives the compliance. Our algorithm made use of the interference of two true-amplitude Gaussian beams emitted from surface source and receiver arrays that are extrapolated downward and focused on fractured reservoir targets. The double beam interference pattern provides information about the three fracture parameters. We performed a blind test on our methodology. A 3D model with two sets of orthogonal fractures was built, and a 3D staggered finite-difference method using the Schoenberg linear-slip boundary condition for fractures was used to generate the synthetic surface seismic data set. The test results showed that we were able to not only invert for the fracture orientation and spacing, but also the compliance field.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3