Finite‐difference modeling of faults and fractures

Author:

Coates Richard T.1,Schoenberg Michael1

Affiliation:

1. Schlumberger Cambridge Research Ltd., High Cross, Madingley Road, Cambridge CB3 OEL, England

Abstract

For the purposes of seismic propagation, a slip fault may be regarded as a surface across which the displacement caused by a seismic wave is discontinuous while the stress traction remains continuous. The simplest assumption is that this slip and the stress traction are linearly related. Such a linear slip interface condition is easily modeled when the fault is parallel to the finite‐difference grid, but is more difficult to do for arbitrary nonplanar fault surfaces. To handle such situations we introduce equivalent medium theory to model material behavior in the cells of the finite‐ difference grid intersected by the fault. Virtually identical results were obtained from modeling the fault by (1) an explicit slip interface condition (fault parallel to the grid) and (2) using the equivalent medium theory when the finite‐difference grid was rotated relative to the fault and receiver array. No additional computation time is needed except for the preprocessing required to find the relevant cells and their associated moduli. The formulation is sufficiently general to include faults in and between arbitrary anisotropic materials with slip properties that vary as a function of position.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 199 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3