Robust estimation of primaries by sparse inversion via one-norm minimization

Author:

Lin Tim T. Y.1,Herrmann Felix J.1

Affiliation:

1. University of British Columbia, Department of Earth and Ocean Sciences, Seismic Laboratory for Imaging and Modeling, Vancouver, Canada..

Abstract

A recently proposed method called estimation of primaries by sparse inversion (EPSI) avoids the need for adaptive subtraction of approximate multiple predictions by directly inverting for the multiple-free subsurface impulse response as a collection of band-limited spikes. Although it can be shown that the correct primary impulse response is obtained through the sparsest possible solution, the original EPSI algorithm was not designed to take advantage of this result, and instead it relies on a multitude of inversion parameters, such as the level of sparsity per gradient update. We proposed and tested a new algorithm, named robust EPSI, in which we make obtaining the sparsest solution an explicit goal. Our approach remains a gradient-based approach like the original algorithm, but it is derived from a new biconvex optimization framework based on an extended basis-pursuit denoising formulation. Furthermore, because it is based on a general framework, robust EPSI can recover the impulse response in transform domains, such as sparsifying curvelet-based representations, without changing the underlying algorithm. We discovered that the sparsity-minimizing objective of our formulation enabled it to operate successfully on a variety of synthetic and field marine data sets without excessive tweaking of inversion parameters. We also found that recovering the solution in alternate sparsity domains can significantly improve the quality of the directly estimated primaries, especially for weaker late-arrival events. In addition, we found that robust EPSI produces a more artifact-free impulse response compared to the original algorithm.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3