High-frequency seismic response during permeability reduction due to biopolymer clogging in unconsolidated porous media

Author:

Kwon Tae-Hyuk1,Ajo-Franklin Jonathan B.2

Affiliation:

1. Korea Advanced Institute of Science and Technology (KAIST), Department of Civil and Environmental Engineering, Daejeon, Korea..

2. Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, California, USA..

Abstract

The accumulation of biopolymers in porous media, produced by stimulating either indigenous bacteria or artificially introduced microbes, readily blocks pore throats and can effectively reduce bulk permeability. Such a microbial clogging treatment can be used for selective plugging of permeable zones in reservoirs and is considered a potentially promising approach to enhance sweep efficiency for microbial enhanced oil recovery (MEOR). Monitoring in situ microbial growth, biopolymer formation, and permeability reduction in the reservoir is critical for successful application of this MEOR approach. We examined the feasibility of using seismic signatures (P-wave velocity and attenuation) for monitoring the in situ accumulation of insoluble biopolymers in unconsolidated sediments. Column experiments, which involved stimulating the sucrose metabolism of Leuconostoc mesenteroides and production of the biopolymer dextran, were performed while monitoring changes in permeability and seismic response using the ultrasonic pulse transmission method. We observed that L. mesenteroides produced a viscous biopolymer in sucrose-rich media. Accumulated dextran, occupying 4%–6% pore volume after [Formula: see text] days of growth, reduced permeability more than one order of magnitude. A negligible change in P-wave velocity was observed, indicating no or minimal change in compressive stiffness of the unconsolidated sediment during biopolymer formation. The amplitude of the P-wave signals decreased [Formula: see text] after [Formula: see text] days of biopolymer production; spectral ratio analysis in the 0.4–0.8-MHz band showed an approximate 30%–50% increase in P-wave attenuation ([Formula: see text]) due to biopolymer production. A flow-induced loss mechanism related to the combined grain/biopolymer structure appeared to be the most plausible mechanism for causing the observed increase in P-wave attenuation in the ultrasonic frequency range. Because permeability reduction is also closely linked to biopolymer volume, P-wave attenuation in the ultrasonic frequency range appears to be an effective indicator for monitoring in situ biopolymer accumulation and permeability reduction and could provide a useful proxy for regions with altered transport properties.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3