Engineered bioclogging in sands: comparison of microbially induced and enzyme-induced biopolymer formation

Author:

Kim Yong-Min1,Kwon Tae-Hyuk2ORCID

Affiliation:

1. Disposal Safety Evaluation R&D Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea.

2. Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea.

Abstract

This study presents two methods of producing an insoluble biopolymer − microbially induced biopolymer formation (MIBF) and enzyme-induced biopolymer formation (EIBF) − and explores their ability to reduce hydraulic conductivity and cause bioclogging in soil from pore to column scales. The batch experiments confirm that insoluble polysaccharidic biopolymers, dextran, are successfully produced either by the model bacteria or by the extracted cell-free enzyme. The results show that the EIBF method is more efficient in producing biopolymer and reducing hydraulic conductivity compared to the MIBF method. This study also uses microfluidic chips, which reveals the pore-filling behaviour of biopolymers produced by both methods. EIBF produces larger dextran flocs than MIBF, and hence EIBF lowers the hydraulic conductivity more than MIBF for a given pore occupancy of dextran. Column experiments demonstrate that both MIBF and EIBF can significantly lower the hydraulic conductivity of coarse sands by two orders of magnitude with only 3% biopolymer pore saturation. The presented results suggest that both methods have the potential to induce well-controlled, engineered bioclogging in coarse-grained soils, and have applications in various geotechnical practices, such as sealing leakage in water-front structures, installing hydraulic barriers and mitigating soil erosion.

Publisher

Thomas Telford Ltd.

Subject

Earth and Planetary Sciences (miscellaneous),Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3