Characterization of elastic properties of near-surface and subsurface deepwater hydrate-bearing sediments

Author:

Zhang Zijian1,Han De-hua2,McConnell Daniel R.1

Affiliation:

1. Fugro GeoConsulting, Inc., Houston, Texas, USA..

2. University of Houston, Department of Earth and Atmospheric Sciences, Houston, Texas, USA..

Abstract

Hydrate-bearing sands and shallow nodular hydrate are potential energy resources and geohazards, and they both need to be better understood and identified. Therefore, it is useful to develop methodologies for modeling and simulating elastic constants of these hydrate-bearing sediments. A gas-hydrate rock-physics model based on the effective medium theory was successfully applied to dry rock, water-saturated rock, and hydrate-bearing rock. The model was used to investigate the seismic interpretation capability of hydrate-bearing sediments in the Gulf of Mexico by computing elastic constants, also known as seismic attributes, in terms of seismic interpretation, including the normal incident reflectivity (NI), Poisson’s ratio (PR), P-wave velocity ([Formula: see text]), S-wave velocity ([Formula: see text]), and density. The study of the model was concerned with the formation of gas hydrate, and, therefore, hydrate-bearing sediments were divided into hydrate-bearing sands, hydrate-bearing sands with free gas in the pore space, and shallow nodular hydrate. Although relations of hydrate saturation versus [Formula: see text] and [Formula: see text] are different between structures I and II gas hydrates, highly concentrated hydrate-bearing sands may be interpreted on poststack seismic amplitude sections because of the high NI present. The computations of elastic constant implied that hydrate-bearing sands with free gas could be detected with the crossplot of NI and PR from prestack amplitude analysis, and density may be a good hydrate indicator for shallow nodular hydrate, if it can be accurately estimated by seismic methods.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3