The impact of grain characteristics on acoustic logging in unconsolidated sands

Author:

Yue Chongwang1ORCID,Wang Zhuwen2ORCID,Yang Zhi1,Li Yu1

Affiliation:

1. Chang’an University, College of Geological Engineering and Surveying, Xi’an 710054, China.(corresponding author); .

2. Jilin University, College of Geoexploration Science and Technology, Changchun 130000, China..

Abstract

Characterizing acoustic propagation in unconsolidated sand reservoirs is critical in offshore oil and gas exploration. We have simulated the acoustic field in a borehole surrounded by granular media based on nonuniform contact, using a 2nd-order in time and 10th-order in space finite-difference technique. We focus on the impact of the porosity and coordination number, grain size, and grain scale distribution on acoustic logging. Numerical simulation results show that P- and S-wave velocities decrease with increasing the porosity or decreasing the coordination number and increase with increasing the grain size. For different grain size distributed in the vertical and radial directions, the velocity and amplitude of the P-wave and S-wave are different. As reflected waves in a borehole, the arrival wave’s velocity is higher and the amplitude is stronger, whereas grains near the source or borehole axis are larger. The results of this paper provide a reference for analyzing and predicting different graded bedding formations for acoustic logging.

Funder

National Natural Science Foundation of China

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3