Affiliation:
1. Harbin Institute of Technology, Department of Mathematics, Harbin, China..
Abstract
We have developed a new algorithm for the reconstruction of seismic traces randomly missing from a uniform grid of a 3D seismic volume. Several algorithms have been developed for such reconstructions, based on properties of the seismic wavefields and on signal processing concepts, such as sparse signal representation in a transform domain. We have investigated a novel approach, originally introduced for noise removal, which is based on the premise that for suitable representation of the seismic data as matrices or tensors, the rank of the seismic data (computed by singular value decomposition) increases with noise or missing traces. Thus, we apply low-rank matrix completion (MC) with a designed texture-patch transformation to 3D seismic data reconstruction. Low-rank components capture geometrically meaningful structures in seismic data that encompass conventional local features such as events and dips. The low-rank MC is based on nuclear-norm minimization. An efficient [Formula: see text]-norm minimizing algorithm, named approximate message passing, is extended to use for a general nonconvex nuclear-norm minimization problem. A fast MC algorithm named low-rank matrix fitting (LMaFit), which avoids the computation of singular value decomposition, was also considered for the 3D reconstruction. Empirical studies on synthetic and real data have shown promising performance of the method, in comparison with traditional projection onto convex sets.
Publisher
Society of Exploration Geophysicists
Subject
Geochemistry and Petrology,Geophysics
Cited by
154 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献