Inverse rock physics modeling for reservoir quality prediction

Author:

Johansen Tor Arne1,Jensen Erling Hugo2,Mavko Gary3,Dvorkin Jack3

Affiliation:

1. University of Bergen, Department of Earth Science, Bergen, Norway; and NORSAR, Bergen, Norway..

2. University of Bergen, Department of Earth Science, Bergen, Norway..

3. Stanford University, Department of Geophysics, Stanford, California, USA..

Abstract

Seismic reservoir characterization requires a transform of seismically derived properties such as P- and S-wave velocities, acoustic impedances, elastic impedances, or other seismic attributes into parameters describing lithology and reservoir conditions. A large number of different rock physics models have been developed to obtain this link. Their relevance is, however, constrained by the type of lithology, porosity range, textural complexity, saturation conditions, and the dynamics of the pore fluid. Because the number of rock physics parameters is often higher than the number of seismic parameters, this is known to be an underdetermined problem with nonunique solutions. We have studied the framework of inverse rock physics modeling which aims at direct quantitative prediction of lithology and reservoir quality from seismic parameters, but where nonuniqueness and data error propagation are also handled. The procedure is based on a numerical reformulation of rock physics models so that the seismic parameters are input and the reservoir quality data are output. The modeling procedure can be used to evaluate the validity of various rock physics models for a given data set. Furthermore, it provides the most robust data parameter combinations to use for either porosity, lithology, and pore fluid prediction, whenever a specific rock physics model has been selected for this cause.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3