Variable-depth streamer acquisition: Broadband data for imaging and inversion

Author:

Soubaras Robert1,Lafet Yves1

Affiliation:

1. CGGVeritas, Massy, France..

Abstract

Conventional marine acquisition uses a streamer towed at a constant depth. The resulting receiver ghost notch gives the maximum recoverable frequency. To push this limit, the streamer must be towed at a quite shallow depth, but this compromises the low frequencies. Variable-depth streamer (VDS) acquisition is an acquisition technique aimed at achieving the best possible signal-to-noise ratio at low frequencies by towing the streamer very deeply, but by using a depth profile varying with offset in order not to limit the high-frequency bandwidth by notches as in conventional constant-depth streamer acquisition. The idea is to use notch diversity, each receiver having a different notch, so that the final result, combining different receivers, will have no notches. The key step to process VDS acquisitions is the receiver deghosting. We found that the optimal receiver deghosting, instead of being a preprocessing step, should be done postimaging, by using a dual-input, migration and mirror migration, and a new joint deconvolution algorithm that produces a 3D real amplitude deghosted output. This method can be applied poststack, the inputs being the migration and mirror migration images and the output being the deghosted image. Using a multichannel joint deconvolution, the inputs are the migrated and mirror migrated image gathers and the outputs are the prestack deghosted image gathers. This method preserves the amplitude-versus-offset behavior, as the deghosted output can be seen on synthetic examples to be equal to a reference computed by migrating the data modeled without any reflecting water surface. A real data set was used to illustrate this method, and another one was used to check the possibility of performing prestack elastic inversion on the deghosted gathers.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3