Geomechanical modeling of induced seismicity source parameters and implications for seismic hazard assessment

Author:

Goertz-Allmann Bettina P.1,Wiemer Stefan2

Affiliation:

1. NORSAR, Kjeller, Norway; formerly ETH Zurich, Switzerland..

2. ETH Zurich, Swiss Seismological Service, Institute of Geophysics, Switzerland..

Abstract

We simulate induced seismicity within a geothermal reservoir using pressure-driven stress changes and seismicity triggering based on Coulomb friction. The result is a forward-modeled seismicity cloud with origin time, stress drop, and magnitude assigned to each individual event. Our model includes a realistic representation of repeating event clusters, and is able to explain in principle the observation of reduced stress drop and increased [Formula: see text]-values near the injection point where pore-pressure perturbations are highest. The higher the pore-pressure perturbation, the less critical stress states still trigger an event, and hence the lower the differential stress is before triggering an event. Less-critical stress states result in lower stress drops and higher [Formula: see text]-values, if both are linked to differential stress. We are therefore able to establish a link between the seismological observables and the geomechanical properties of the source region and thus a reservoir. Understanding the geomechanical properties is essential for estimating the probability of exceeding a certain magnitude value in the induced seismicity and hence the associated seismic hazard of the operation. By calibrating our model to the observed seismicity data, we can estimate the probability of exceeding a certain magnitude event in space and time and study the effect of injection depth and crustal strength on the induced seismicity.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3