Time-lapse electromagnetic and gravity methods in carbon storage monitoring

Author:

Gasperikova Erika1,Li Yaoguo2

Affiliation:

1. Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA..

2. Center for Gravity, Electrical, and Magnetic Studies, Department of Geophysics, Colorado School of Mines, Golden, Colorado, USA..

Abstract

For geologic carbon storage (GCS), monitoring of the storage reservoir and detection of secondary plumes if they accumulate outside of the reservoir are important to confirm that the injected CO2 stays where intended. Seismic methods are most often applied but are expensive. Due to cost considerations, especially for long-term monitoring, less expensive techniques play a role when designing monitoring networks. In this article, the merits of gravity and electromagnetic (EM) methods as monitoring tools for GCS are presented. Many of the technologies are well established, and several new technologies are on the horizon. EM and gravity techniques are complementary to seismic methods and together provide better subsurface monitoring. Time-lapse multiphysics joint inversion, including seismic, EM, and gravity, could be a game changer for carbon storage monitoring. The trade-off between the sensitivity or resolution to a given plume size and the associated costs will be an important factor in selecting efficient and reliable monitoring arrays at GCS sites. Complex digital models representing geology encountered at storage sites can be used for this purpose and present another cost savings.

Funder

Department of Energy

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3