Understanding potential pressure regimes in undrilled Labrador deep water by use of global analogues

Author:

Green S.1,O'Connor S. A.,Edwards A. P.,Carter J. E.,Cameron D. E. L.,Wright R.

Affiliation:

1. Ikon Science Canada Ltd.

Abstract

In recent years, new deepwater seismic-based exploration work has resulted in the revision of existing basin boundaries and identification of new, potentially oil-bearing basins in the deepwater Labrador region. The petroleum potential in this deepwater area has also been encouraged by the identification of slick and seepage locations using 2D seismic data and satellite imagery. The importance is that surface slicks possibly are related to subsurface hydrocarbon migration. Thus, all recent data collated together show strong evidence for an active petroleum system in deep water. Many of the wells in shallow water have been drilled with low mud weights, suggestive of low pore pressures. However, where thick shale packages are present, significant overpressure is observed by significant kicks. Clearly, there is a close association between thick (and deep) shale packages and high pore pressure. Thus, one of the key risks in developing the deepwater potential is to understand the pressure regime. The success of this approach has been highlighted recently by successful discoveries such as the presalt Lulu field onshore Brazil and associated discoveries in Gabon and Angola and postsalt discoveries that include Jubilee field offshore Ghana and the associated discovery of Zaedyus field in French Guiana. The deepwater Vøring Basin of the Mid-Norway North Sea and the Labrador slope and deep water share a similar passive margin setting to each other, similar facies associations, and structural development.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3