Producing pore pressure profiles based on theoretical models in undrilled, deepwater frontier basins

Author:

Green Sam1,O’Connor Stephen A.2,Cameron Deric E. L.3,Carter James E.3,Goodman William2,Heinemann Niklas2,Edwards Alexander P.4

Affiliation:

1. Ikon Science Canada, Calgary, Alberta, Canada..

2. Ikon Science, Durham, UK..

3. Nalcor Energy, St. Johns, Newfoundland, Canada..

4. Ikon Science, Teddington, UK..

Abstract

A working petroleum system was established on the shelf in offshore Labrador with the Bjarni H-81 discovery in 1973 in the Hopedale Basin. The same reservoirs as those targeted on the shelf are present in the deep water, which is currently receiving attention as the result of newly acquired seismic data. To date, only a very small number of wells have been drilled in the deep water, i.e., Blue H-28, Orphan Basin, and none off mainland Labrador. The wells that were drilled in the deep water had encountered significant overpressure, e.g., kicks that indicated overpressures of 26,850 kPa in the Mid-Cretaceous. Therefore, it was reasonable to assume that pore pressures be similarly high for any new deepwater prospects identified. To help reduce the risk in unexplored environments, we developed an approach that can be adopted to model pore pressure in deepwater settings, with Labrador as the main case study area featured, but also we discussed other global examples such as the Vøring Basin, Mid-Norway. Our results indicated, as a first approximation, that seismic velocity-based pore pressures in shale-rich intervals were similar to the geologic model down to the Lower Tertiary. Deep lithologies were, by regional analogue, likely affected by cementation that will act to preserve overpressure generated by disequilibrium compaction by reducing permeability but will not generate additional pore pressure. The cements (and any carbonate or volcanic lithologies) will, however, result in faster shales and will underpredict pore pressure by mimicking low porosity. A theoretical or “geologic modeling” approach can be used to sense-check any pore pressure interpretation from seismic velocity. The geologic approach also can be used to assess the risk for mechanical seal failure by allowing for estimates of the pore pressure, and related fracture pressure, to be made without the effects of cementation that affect the logs and seismic velocity data.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference49 articles.

1. Astrium-Geo, 2010, Interpretation of satellite imagery to locate natural oil seepage, http://www.astrium-geo.com/en/88-locate-natural-oil-seepage-for-nalcor-energy, accessed 3 July 2014.

2. Rock-physics diagnostics of depositional texture, diagenetic alterations, and reservoir heterogeneity in high-porosity siliciclastic sediments and rocks — A review of selected models and suggested work flows

3. Geology of Canada;Balkwill H. R.,1990

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3