Topographic migration of georadar data: Implications for acquisition and processing

Author:

Lehmann Frank1,Green Alan G.1

Affiliation:

1. Swiss Fed. Inst. of Tech., Institute of Geophysics, ETH-Honggerberg, CH-8093 Zürich, Switzerland

Abstract

Application of conventional elevation static corrections and migration to wavefield data recorded on irregular surfaces may result in poor reconstructions of complex subsurface features. Particulary poor images may be obtained at locations where the depths to target structures are comparable to undulations in the surface topography. For example, topographic relief of only 1-2 m may be important for the processing of georadar data. We describe an algorithm that allows georadar data to be migrated directly from gently to highly irregular acquisition surfaces. When applied to a variety of complicated synthetic data sets, topographically migrated images are observed to be markedly superior to those produced by two standard processing schemes. Extensive tests demonstrate that topographic migration should be considered in regions characterized by surface gradients ≫10% (i.e., dips ≫6°). For effective topographic migration, lateral and vertical coordinates of the georadar antennas should be determined to better than 10% of the dominant georadar wavelength, and velocities should be known to within 10–20% (e.g., 0.01–0.02 m/ns) of their true values. When applied to data collected across a moderately dipping (∼14°) rock glacier in the Swiss Alps, georadar sections resulting from two standard processing schemes have reflectors with depths and dips that differ by a significant 10–15% from those in the topographically migrated images.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3