3D ground-penetrating radar data analysis and interpretation using attributes based on the gradient structure tensor

Author:

Koyan Philipp1ORCID,Tronicke Jens2ORCID

Affiliation:

1. University of Potsdam, Institute of Geosciences, Potsdam, Germany. (corresponding author)

2. University of Potsdam, Institute of Geosciences, Potsdam, Germany.

Abstract

In near-surface geophysics, ground-penetrating radar (GPR) surveys are routinely used in a variety of applications including those from archaeology, civil engineering, hydrology, and soil science. Thanks to recent technical developments in GPR instrumentation and antenna design, 3D surveys comprising several hundred thousand traces can be performed daily. Especially in complex environments such as sedimentary systems, analyzing and interpreting the resulting GPR volumes is a time-consuming and laborious task that is still largely performed manually. In the past few decades, several data attributes have been developed to guide and improve such tasks and assure a higher degree of reproducibility in the resulting interpretations. Many of these attributes have been developed in image processing or computer vision and are routinely used, for example, in reflection seismic data interpretation. Especially in sedimentary systems, variations in the subsurface are accompanied by variations of GPR reflections in terms of the amplitudes, continuity, and geometry in view of the dip angle and direction. A promising tool to analyze such structural features is known as the gradient structure tensor (GST). To date, the application of the GST approach has been limited to a few 2D GPR examples. Thus, we take the basic idea of GST analysis and introduce and evaluate the corresponding attributes to analyze 3D GPR data. We apply our GST approach to one synthetic and two field data sets imaging diverse sedimentary structures. Our results demonstrate that our set of GST-based attributes can be efficiently computed in three dimensions and that these attributes represent versatile measures to address different typical interpretation tasks and, thus, help for an efficient, reproducible, and more objective interpretation of 3D GPR data.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Society of Exploration Geophysicists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3