Is 3D frequency-domain FWI of full-azimuth/long-offset OBN data feasible? The Gorgon data FWI case study

Author:

Operto S.1,Amestoy P.2,Aghamiry H.1,Beller S.1,Buttari A.3,Combe L.1,Dolean V.4,Gerest M.56,Guo G.1,Jolivet P.6,L'Excellent J.-Y.2,Mamfoumbi F.1,Mary T.6,Puglisi C.2,Ribodetti A.1,Tournier P.-H.7

Affiliation:

1. Université Côte d'Azur, Nice, France..

2. Mumps Technologies, Lyon, France..

3. Université de Toulouse, CNRS, IRIT, Toulouse, France..

4. Université Côte d'Azur/University of Strathclyde, Glasgow, Scotland, UK..

5. EDF R&D, Paris, France..

6. Sorbonne Université, CNRS, LIP6, Paris, France..

7. Sorbonne Université, CNRS, Laboratoire Jacques-Louis Lions, Paris, France..

Abstract

Frequency-domain full-waveform inversion (FWI) is potentially amenable to efficient processing of full-azimuth long-offset stationary-recording seabed acquisition carried out with a sparse layout of ocean-bottom nodes (OBNs) and broadband sources because the inversion can be performed with a few discrete frequencies. However, computing the solution of the forward (boundary-value) problem efficiently in the frequency domain with linear algebra solvers remains a challenge for large computational domains involving tens to hundreds of millions of parameters. We illustrate the feasibility of 3D frequency-domain FWI with a subset of the 2015/2016 Gorgon OBN data set in the North West Shelf, Australia. We solve the forward problem with the massively parallel multifrontal direct solver MUMPS, which includes four key features to reach high computational efficiency: an efficient parallelism combining message-passing interface and multithreading, block low-rank compression, mixed-precision arithmetic, and efficient processing of sparse sources. The Gorgon subdata set involves 650 OBNs that are processed as reciprocal sources and 400,000 sources. Monoparameter FWI for vertical wavespeed is performed in the viscoacoustic vertically transverse isotropic approximation with a classical frequency continuation approach proceeding from a starting frequency of 1.7 Hz to a final frequency of 13 Hz. The target covers an area ranging from 260 km2 (frequency ≥ 8.5 Hz) to 705 km2 (frequency ≤ 8.5 Hz) for a maximum depth of 8 km. Compared to the starting model, FWI dramatically improves the reconstruction of the bounding faults of the Gorgon horst at reservoir depths as well as several intrahorst faults and several horizons of the Mungaroo Formation down to a depth of 7 km. Seismic modeling reveals a good kinematic agreement between recorded and simulated data, but amplitude mismatches between the recorded and simulated reflection from the reservoir suggest elastic effects. Therefore, future works involve multiparameter reconstruction for density and attenuation before considering elastic FWI from hydrophone and geophone data.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3