Learned multiphysics inversion with differentiable programming and machine learning

Author:

Louboutin Mathias1,Yin Ziyi2,Orozco Rafael3,Grady Thomas J.3,Siahkoohi Ali3,Rizzuti Gabrio4,Witte Philipp A.5,Møyner Olav6,Gorman Gerard J.7,Herrmann Felix J.1

Affiliation:

1. Georgia Institute of Technology, School of Earth and Atmospheric Sciences, Atlanta, Georgia, USA..

2. Georgia Insitute of Technology, School of Computational Science and Engineering, Atlanta, Georgia, USA..

3. Georgia Institute of Technology, College of Computing, Atlanta, Georgia, USA..

4. Utrecht University, Utrecht, Netherlands..

5. Microsoft Corp., Redmond, Washington, USA..

6. SINTEF, Trondheim, Norway..

7. Imperial College London, Department of Earth Science and Engineering, London, UK..

Abstract

We present the Seismic Laboratory for Imaging and Modeling/Monitoring open-source software framework for computational geophysics and, more generally, inverse problems involving the wave equation (e.g., seismic and medical ultrasound), regularization with learned priors, and learned neural surrogates for multiphase flow simulations. By integrating multiple layers of abstraction, the software is designed to be both readable and scalable, allowing researchers to easily formulate problems in an abstract fashion while exploiting the latest developments in high-performance computing. The design principles and their benefits are illustrated and demonstrated by means of building a scalable prototype for permeability inversion from time-lapse crosswell seismic data, which, aside from coupling of wave physics and multiphase flow, involves machine learning.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Reference83 articles.

1. Asim, M., M. Daniels, O. Leong, A. Ahmed, and P. Hand, 2020, Invertible generative models for inverse problems: Mitigating representation error and dataset bias: Proceedings of the 37th International Conference on Machine Learning, PMLR, http://proceedings.mlr.press/v119/asim20a.html, accessed 2 June 2023.

2. Julia: A Fresh Approach to Numerical Computing

3. Dinh, L., J. Sohl-Dickstein, and S. Bengio, 2016, Density estimation using Real NVP: arXiv preprint, https://doi.org/10.48550/arXiv.1605.08803.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Time-lapse full-waveform permeability inversion: A feasibility study;The Leading Edge;2024-08

2. InvertibleNetworks.jl: A Julia package for scalable normalizing flows;Journal of Open Source Software;2024-07-30

3. WISE: Full-waveform variational inference via subsurface extensions;GEOPHYSICS;2024-05-31

4. Solving multiphysics-based inverse problems with learned surrogates and constraints;Advanced Modeling and Simulation in Engineering Sciences;2023-10-11

5. Full-Waveform Inversion Using a Learned Regularization;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3