Prediction of lateral variations in reservoir properties throughout an interpreted seismic horizon using an artificial neural network

Author:

Cersósimo Darío Sergio1,Ravazzoli Claudia L.2,Martínez Ramón García3

Affiliation:

1. GALP Energía.

2. CONICET and Universidad Nacional de La Plata, Argentina.

3. Universidad Nacional de Lanús, Argentina.

Abstract

Successful use of an artificial neural network is shown to predict lateral variations of seismic velocity, density, thickness, and gamma rays associated with sand dune reservoirs identified on a previously interpreted seismic horizon. The work is presented in two main sections. Section one is a feasibility analysis based on synthetic data. A known geologic model is used, performed by pseudowells, in which lateral variations in seismic velocity, density, and gamma ray values are related to the dunes. The synthetic seismic model and the attributes derived are used as training input in the neural network. Section two is a real case example where the methodology is applied to a real seismic data set. Results indicate that using a set of data and attributes restricted to a time interval corresponding to a previously interpreted seismic horizon is more efficient than using a whole data cube, involving a very large volume of data.

Publisher

Society of Exploration Geophysicists

Subject

Geology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3