Reverse time migration in tilted transversely isotropic (TTI) media

Author:

Fletcher Robin P.12,Du Xiang12,Fowler Paul J.12

Affiliation:

1. WesternGeco, Schlumberger House, Gatwick Airport, West Sussex, England. .

2. WesternGeco, Denver, Colorado, U.S.A. .

Abstract

Reverse time migration (RTM) exhibits great advantages over other imaging methods because it is based on computing numerical solutions to a two-way wave equation. It does not suffer from dip limitation like one-way downward continuation techniques do, thus enabling overturned reflections to be imaged. As well as correctly handling multipathing, RTM has the potential to image internal multiples when the boundaries responsible for generating the multiples are present in the model. In isotropic media, one can use a scalar acoustic wave equation for RTM of pressure data. In anisotropic media, P- and SV-waves are coupled together so, formally, elastic wave equations must be used for RTM. A new wave equation for P-waves is proposed in tilted transversely isotropic (TTI) media that can be solved as part of an acoustic anisotropic RTM algorithm, using standard explicit finite differencing. If the shear velocity along the axis of symmetry is set to zero, stable numerical solutions can be computed for media with a vertical axis of symmetry and [Formula: see text] not less than [Formula: see text]. In TTI media with rapid variations in the direction of the axis of symmetry, setting the shear velocity along the axis of symmetry to zero can cause numerical solutions to become unstable. A solution to this problem is proposed that involves using a small amount of nonzero shear velocity. The amount of shear velocity added is chosen to remove triplications from the SV wavefront and to minimize the anisotropic term of the SV reflection coefficient. We show modeling and high-quality RTM results in complex TTI media using this equation.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 234 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3