Multi-image, reverse time, and Kirchhoff migrations with compact Green’s functions

Author:

Cunha Carlos1,Ritter Gerson2ORCID,Sardinha Alexandre2ORCID,Dias Bruno Pereira2ORCID,Guerra Claudio2ORCID,Thedy Fernanda2ORCID,Hargreaves Nelson2ORCID,Coacci Rodrigo2ORCID

Affiliation:

1. Petrobras, Rio de Janeiro, Brasil. (corresponding author)

2. Petrobras, Rio de Janeiro, Brasil.

Abstract

Using compact representations of Green’s functions we derive a common framework for reverse time migration (RTM) and Kirchhoff migration. These compact Green’s functions (CGFs) are 3D volumes containing traveltimes and amplitudes for the N most representative events in the upcoming/downgoing decomposed 4D wavefields originating from a point source. Within this framework, we implement an RTM algorithm using a multivalued excitation time/amplitude imaging condition. This new approach produces four complementary imaging volumes (different combinations of source and receiver decomposed wavefields) and angle/azimuth gathers with computational effort less than 15% greater than that of plain (one image and no gathers) RTM algorithms. The advantages of separating the image volume into four complementary volumes are well established in the literature (low-frequency noise separation and turning wave imaging); however, its use has been limited by the computational cost. Despite using two source propagations to decompose the source wavefield, we reduce the computations to less than 20% of a single source propagation by performing finite-difference propagation with half the frequency limit used in the receiver wavefield propagation. The combination of CGF and an excitation time/amplitude imaging condition allows receiver wavefield decomposition with only one wavefield propagation. Our RTM algorithm constructs angle/azimuth gathers using a postmigration computation of the source and receiver wavefield’s propagation directions. To compute the propagation directions after migration, we use a new concept: the cumulative wavefield volumes, which are 3D, imaging-condition-guided compressions, of the 4D source and receiver wavefields. We also use CGF to implement a Kirchhoff migration algorithm that produces four complementary image volumes with RTM-like quality. Furthermore, we present synthetic and field data examples to clarify the new concepts and illustrate the results obtained using these methods.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3