Spatial orientation and distribution of reservoir fractures from scattered seismic energy

Author:

Willis Mark E.12,Burns Daniel R.12,Rao Rama12,Minsley Burke12,Toksöz M. Nafi12,Vetri Laura12

Affiliation:

1. Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, Earth Resources Laboratory, Cambridge, Massachusetts 02139.

2. ENI E&P, Agip, Milan, Italy.

Abstract

We present the details of a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations we have made from 3D finite-difference modeling of the reflected and scattered seismic energy over discrete systems of vertical fractures. Regularly spaced, discrete vertical fracture corridors impart a coda signature, which is a ringing tail of scattered energy, to any seismic waves which are transmitted through or reflected off of them. This signature varies in amplitude and coherence as a function of several parameters including: (1) the difference in angle between the orientation of the fractures and the acquisition direction, (2) the fracture spacing, (3) the wavelength of the illuminating seismic energy, and (4) the compliance, or stiffness, of the fractures. This coda energy is most coherent when the acquisition direction is parallel to the strike ofthe fractures. It has the largest amplitude when the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. Our method uses surface seismic reflection traces to derive a transfer function that quantifies the change in an apparent source wavelet before and after propagating through a fractured interval. The transfer function for an interval with no or low amounts of scattering will be more spikelike and temporally compact. The transfer function for an interval with high scattering will ring and be less temporally compact. When a 3D survey is acquired with a full range of azimuths, the variation in the derived transfer functions allows us to identify subsurface areas with high fracturing and to determine the strike of those fractures. We calibrated the method with model data and then applied it to the Emilio field with a fractured reservoir. The method yielded results which agree with known field measurements and previously published fracture orientations derived from PS anisotropy.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3