Source-independent time-domain vector-acoustic full-waveform inversion

Author:

Zhong Yu1ORCID,Liu Yangting2ORCID

Affiliation:

1. China University of Geosciences (Beijing), School of Geophysics and Information Technology, Beijing 100083, China..

2. First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China, and China University of Geosciences, Beijing 100083, China.(corresponding author).

Abstract

Dual-sensor seismic acquisition systems that record the pressure and particle velocity allow the recording of the full-vector-acoustic (VA) wavefields. Most previous studies have focused on data-domain processing methods based on VA seismic data; whereas, few studies focused on using full-VA seismic data in full-waveform inversion (FWI). Conventional acoustic FWI only takes advantage of the pressure recordings to estimate the medium’s velocity model. Some artifact events will appear in the adjoint-state wavefields based on the conventional acoustic FWI method. These artifact events further reduce the accuracy of acoustic FWI. To simultaneously use pressure and vertical particle velocity recordings, we introduced a new time-domain VA FWI method. The VA FWI method can take advantage of directivity information contained in the VA seismic data. Thus, the adjoint-state wavefields based on VA FWI are more accurate than those from the conventional acoustic FWI method. In addition, we applied a convolution-based objective function to eliminate the effects of the source wavelet and implement a time-domain multiscale strategy in VA FWI. Synthetic examples are presented to demonstrate that VA FWI can improve the accuracy of acoustic FWI in the presence and absence of a free surface in the acoustic case. In addition, VA FWI does not significantly increase the computation and memory costs, but it has better convergence when compared with conventional acoustic FWI.

Funder

National Natural Science Foundation of China

Basic Scientific Fund for National Public Research Institutes of China

Shandong Provincial Natural Science Foundation, China

Qingdao National Laboratory for Marine Science Technology

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3