Structurally tailored 3D anisotropic controlled-source electromagnetic resistivity inversion with cross-gradient criterion and simultaneous model calibration

Author:

Meju Max A.1ORCID,Mackie Randall L.2ORCID,Miorelli Federico2ORCID,Saleh Ahmad Shahir1,Miller Roger V.1

Affiliation:

1. Petronas Upstream, Centre for Advanced Imaging, Petronas Twin Towers, Kuala Lumpur 50088, Malaysia..

2. CGG Multi-Physics Imaging, Milan, Italy..

Abstract

Geologic interpretation of 3D anisotropic resistivity models from conventional marine controlled-source electromagnetic (CSEM) data inversion faces difficulties in low-resistivity contrast sediments and structurally complex environments that typify the new frontiers for hydrocarbon exploration. Currently, the typically reconstructed horizontal resistivity [Formula: see text] and vertical resistivity [Formula: see text] models often have conflicting depth structures that are difficult to explain in terms of subsurface geology, and the resulting resistivities may not be close to the true formation resistivities required for estimating reservoir parameters. We have investigated the concept that an objective geologically oriented or structurally tailored inversion can be achieved by requiring that the cross-product of the gradient of horizontal resistivity and the gradient of the vertical resistivity is equal to zero at significant geologic boundaries. We incorporate this boundary-shape criterion in our 3D inverse problem formulations, implemented within nonlinear model-space and conjugate-gradient contexts, for cases in which a priori calibration data from wells and/or seismically derived subsurface boundaries are available and for cases in which these are lacking. The resulting fit-for-purpose solutions serve to better analyze the peculiarity of a given data set. We applied these algorithms to synthetic and field CSEM data sets representing a fold-thrust environment with low-resistivity and low-contrast sediments. The resulting [Formula: see text] and [Formula: see text] models from cross-gradient joint inversion of synthetic data of appropriate frequency bandwidth without a priori information are structurally similar and consistent with the test models, whereas those from the inversions of band-limited field data are consistent with the available seismic and resistivity well-log data. This particular approach will thus be useful for lithologic correlation in frontier regions with limited a priori information using broadband CSEM data. For these band-limited field data, we found that the anisotropic bulk resistivities of the low-contrast sediments are better determined by incorporating a priori calibration data from triaxial resistivity logs and seismic horizons.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3