Error propagation and model update analysis in three-dimensional CSEM inversion

Author:

Dehiya Rahul1

Affiliation:

1. Department of Earth and Climate Science, Indian Institute of Science Education and Research Pune , 411008 Pune , India

Abstract

SUMMARY This study examines error propagation from data to model space during 3-D inversion of controlled-source electromagnetic (CSEM) data using a Gauss–Newton-based algorithm. An expression for model parameter correction is obtained using higher order generalized singular value decomposition for various regularization strategies. Inverse modelling is performed for different types of noise employing distinct regularization schemes to investigate the impact of error. Data corrupted with random noise suggest that the random noise mainly propagates when regularization parameters are small, owing to the high-frequency nature of random noise. Furthermore, the random noise predominantly causes artefacts in the shallower part of the inverted model. However, it has little impact on the estimation of major anomalies because the anomaly primarily depends on the smoothly varying parts of data. These observations are valid for both isotropic and anisotropic inversions. Resistive geological anomalies, like vertical dyke or vertical fractures, may pose a significant challenge for isotropic inversion in terms of convergence and data fit, even if the subsurface is isotropic. On the other hand, anisotropic inversion performs remarkably well in such cases, showing faster convergence and better data fit than isotropic inversion. Anisotropic inversion is indispensable in the case of an anisotropic host medium, as isotropic inversion produces significant artefacts and poorer data fit. Numerical experiments suggest that, in general, anisotropic inversion produces relatively better data fit and faster convergence, even in the case of isotropic subsurface. However, due to the varying degree of sensitivity of CSEM data on thin resistive bodies, caution is required in interpreting an anisotropy obtained using anisotropic inversion. An investigation of field data also supports the observations obtained using synthetic experiments.

Funder

DST

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3