The Shuey-Radon transform

Author:

Gholami Ali1ORCID,Farshad Milad1ORCID

Affiliation:

1. University of Tehran, Institute of Geophysics, Tehran, Iran..

Abstract

The traditional hyperbolic Radon transform (RT) decomposes seismic data into a sum of constant amplitude basis functions. This limits the performance of the transform when dealing with real data in which the reflection amplitudes include the amplitude variation with offset (AVO) variations. We adopted the Shuey-Radon transform as a combination of the RT and Shuey’s approximation of reflectivity to accurately model reflections including AVO effects. The new transform splits the seismic gather into three Radon panels: The first models the reflections at zero offset, and the other two panels add capability to model the AVO gradient and curvature. There are two main advantages of the Shuey-Radon transform over similar algorithms, which are based on a polynomial expansion of the AVO response. (1) It is able to model reflections more accurately. This leads to more focused coefficients in the transform domain and hence provides more accurate processing results. (2) Unlike polynomial-based approaches, the coefficients of the Shuey-Radon transform are directly connected to the classic AVO parameters (intercept, gradient, and curvature). Therefore, the resulting coefficients can further be used for interpretation purposes. The solution of the new transform is defined via an underdetermined linear system of equations. It is formulated as a sparsity-promoting optimization, and it is solved efficiently using an orthogonal matching pursuit algorithm. Applications to different numerical experiments indicate that the Shuey-Radon transform outperforms the polynomial and conventional RTs.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3