Three-dimensional numerical modeling of gravity and magnetic anomaly in a mixed space-wavenumber domain

Author:

Dai Shikun1,Zhao Dongdong1ORCID,Wang Shunguo2ORCID,Xiong Bin3,Zhang Qianjiang1,Li Kun1,Chen Longwei3ORCID,Chen Qingrui1

Affiliation:

1. Central South University, Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Ministry of Education, Changsha, China and Central South University, School of Geosciences and Info-physics, Changsha, China..

2. Scripps Institution of Oceanography, UC San Diego, La Jolla, California, USA.(corresponding author).

3. Guilin University of Technology, College of Earth Sciences, Guilin, China..

Abstract

Fast and accurate numerical modeling of gravity and magnetic anomalies is the basis of field-data inversion and quantitative interpretation. In gravity and magnetic prospecting, the computation and memory requirements of practical modeling is still a significant issue, which leads to the difficulty of using efficient and detailed inversions for large-scale complex models. A new 3D numerical modeling method for gravity and magnetic anomaly in a mixed space-wavenumber domain is proposed to mitigate the difficulties. By performing a 2D Fourier transform along two horizontal directions, 3D partial differential equations governing gravity and magnetic potentials in the spatial domain are transformed into a group of independent 1D differential equations wrapped with different wavenumbers. Importantly, the computation and memory requirements of modeling are greatly reduced by this method. A modeling example with 4,040,100 observations can be finished in approximately 28 s on a desktop using a single core, and the independent differential equations are highly parallel among different wavenumbers. The method preserves the vertical component in the space domain, and thus a mesh for modeling can be finer at a shallower depth and coarser at a deeper depth. In general, the new method takes into account the calculation accuracy and the efficiency. The finite-element algorithm combined with a chasing method is used to solve the transformed differential equations with different wavenumbers. In a synthetic test, a model with prism-shaped anomalies is used to verify the accuracy and efficiency of the proposed algorithm by comparing the analytical solution, our numerical solution, and a well-known numerical solution. Furthermore, we have studied the balance between computational accuracy and efficiency using a standard fast Fourier transform (FFT) method with grid expansion and the Gauss-FFT method. A model with topography is also used to explore the ability of modeling topography with our method. The results indicate that the proposed method using the Gauss-FFT method has characteristics of fast calculation speed and high accuracy.

Funder

National Science Technology Major Project of China

China Postdoctoral Science Foundation

Central South University

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3