Quantifying static and dynamic stiffness anisotropy and nonlinearity in finely laminated shales: Experimental measurement and modeling

Author:

Ramos Matthew J.1ORCID,Nicolas Espinoza D.2,Laubach Stephen E.3,Torres-Verdín Carlos2ORCID

Affiliation:

1. The University of Texas at Austin, Jackson School of Geosciences, 2305 Speedway, Austin, Texas 78712, USA and The University of Texas at Austin, Department of Petroleum and Geosystems Engineering, 200 E. Dean Keeton St., Austin, Texas 78712, USA..

2. The University of Texas at Austin, Department of Petroleum and Geosystems Engineering, 200 E. Dean Keeton Street, Austin, Texas 78712, USA..

3. The University of Texas at Austin, Bureau of Economic Geology, 10611 Exploration Way, Austin, Texas 78758, USA..

Abstract

Sedimentary rocks contain layers and a wide range of microstructures that may produce mechanical complexities including dynamic and quasistatic stiffness anisotropy and nonlinearity. However, most applications in geophysics and geomechanics disregard these mechanical complexities, which can lead to significant error and uncertainty in rock properties and may increase the risk associated with cost-intensive drilling and completions operations in shales. We have conducted simultaneous triaxial stress tests and ultrasonic wave propagation monitoring to measure and model stiffness anisotropy and nonlinearity of Mancos Shale plugs with varying bedding orientations. Results highlight the need for different sets of nonlinear coefficients to describe different stress loading paths, in which isotropic loading exhibits larger increases in stiffness for a given change in mean stress (and strain) than deviatoric loading. The vertical transverse isotropic (VTI) nonlinear model helps to account for the appreciable anisotropy and nonlinearity of Mancos samples, in which the dynamic Young’s moduli [Formula: see text] are more than 25% higher than [Formula: see text] and [Formula: see text] increases by approximately 35% during deviatoric stress loading. Measured static moduli are typically less than 50% of their dynamic equivalent and exhibit separate anisotropic and nonlinear relationships. Therefore, we have developed anisotropic stress-dependent dynamic-static transforms to estimate the static moduli from the nonlinear VTI model. Although heterogeneity and discontinuities cause samples to deviate from VTI symmetry, our modified dynamic-static transforms provide an excellent fit to the experimentally measured Young’s moduli and Poisson’s ratios. Post-test X-ray micro-CT imaging evidences the impact of sample layering and heterogeneity on rock failure and failure geometry. Bedding planes can act as preferential failure planes, whereas layering-induced mechanical stratigraphy can cause fractures to reorient due to changes in lithology. Our combined experimental, modeling, and imaging results provide insight into the complex deformational and failure behavior of shales. The analysis and results also highlight the need to consider the elastic and plastic deformations in shales.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3