The longitudinal modulus of bitumen: Pressure and temperature dependencies

Author:

Rabbani Arif1ORCID,Schmitt Douglas R.2ORCID

Affiliation:

1. Formerly University of Alberta, Institute of Geophysical Research, Department of Physics, Edmonton, Alberta, Canada; presently University of Alberta, Department of Earth and Atmospheric Sciences, Edmonton, Alberta, Canada.(corresponding author).

2. Formerly University of Alberta, Institute of Geophysical Research, Department of Physics, Edmonton, Alberta, Canada; presently Purdue University, Earth, Atmospheric, and Planetary Sciences Department, West Lafayette, Indiana, USA..

Abstract

Bitumen retains significant solid-like behavior even in temperatures in excess of 50°C. Traditional ultrasonic wave-propagation studies have, however, largely ignored the existence of the shear modulus in such materials, and they have mostly assumed that the observed longitudinal (P) wave speeds solely depend on the fluid’s bulk modulus. To further study this, we have measured ultrasonic longitudinal (P) wave transmission speeds through viscous bitumen at different pressures (0.1–15 MPa) and temperatures (7–132°C) using an adapted version of the technique that consists of two piezoelectric receivers placed at unequal lengths from the transmitter. As such, we are able to calculate the P-wave attenuation and velocity that is used to derive the material’s complex longitudinal modulus. Using parallel measurements of the bitumen’s complex shear modulus, we find that the bulk modulus differs from the longitudinal modulus particularly at lower (reservoirs) temperatures. The results, together with the realization that bitumen experiences a sequence of various compositional and thermophysical phase that is primarily temperature-dependent, can be implemented to improve the fluid-substitution analyses of rock-physics studies of bitumen-saturated reservoirs.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3