Acoustic wave propagation in a porous medium saturated with a Kelvin–Voigt non-Newtonian fluid

Author:

Ba Jing1,Fang Zhijian1,Fu Li-Yun2,Xu Wenhao1,Zhang Lin1

Affiliation:

1. School of Earth Sciences and Engineering, Hohai University , Nanjing 211100 , China

2. School of Geosciences, China University of Petroleum (East China) , Qingdao 266555 , China

Abstract

SUMMARYWave propagation in anelastic rocks is a relevant scientific topic in basic research with applications in exploration geophysics. The classical Biot theory laid the foundation for wave propagation in porous media composed of a solid frame and a saturating fluid, whose constitutive relations are linear. However, reservoir rocks may have a high-viscosity fluid, which exhibits a non-Newtonian (nN) behaviour. We develop a poroelasticity theory, where the fluid stress-strain relation is described with a Kelvin–Voigt mechanical model, thus incorporating viscoelasticity. First, we obtain the differential equations from first principles by defining the strain and kinetic energies and the dissipation function. We perform a plane-wave analysis to obtain the wave velocity and attenuation. The validity of the theory is demonstrated with three examples, namely, considering a porous solid saturated with a nN pore fluid, a nN fluid containing solid inclusions and a pure nN fluid. The analysis shows that the fluid may cause a negative velocity dispersion of the fast P(S)-wave velocities, that is velocity decreases with frequency. In acoustics, velocity increases with frequency (anomalous dispersion in optics). Furthermore, the fluid viscoelasticity has not a relevant effect on the wave responses observed in conventional field and laboratory tests. A comparison with previous theories supports the validity of the theory, which is useful to analyse wave propagation in a porous medium saturated with a fluid of high viscosity.

Funder

Jiangsu Province

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3