A simple geologic risk-tailored 3D controlled-source electromagnetic multiattribute analysis and quantitative interpretation approach

Author:

Meju Max A.1ORCID

Affiliation:

1. Centre for Advanced Imaging, Petronas Carigali, Petronas Twin Towers, Kuala Lumpur 50088, Malaysia..

Abstract

Three-dimensional surveying is the method of choice in marine controlled-source electromagnetic (CSEM) exploration for hydrocarbons in frontier regions, but robust interpretation of the typically large-size field data faces significant challenges, including how to determine the correct resistivity, depth, and lateral limits of hydrocarbon-saturated reservoirs in the presence of heterogeneous host rocks or anisotropy and how to relate CSEM information to the key elements of geologic prospect evaluation (the presence of source rocks, migration and charge, reservoir rock, trap, and seal). We have developed a simple geologic risk-tailored approach for multiattribute analysis and first-pass interpretation of CSEM data in frontier exploration in which little prior information is available. First, geometric normalization of electric field amplitudes at each receiver location yields “phase-consistent” sounding curves that directly represent subsurface electrical structure (and can indicate reservoir rock presence). It enables accurate determination of seafloor resistivity (whose areal variation and direct correlation with seepage-induced geochemical and seismic shallow-gas anomalies can indicate the presence of a working petroleum system). Edge-detection attributes are then used to determine the geographical position and boundary shape of anomalous 3D resistive bodies (the trap presence and structural closure). Keeping these known parameters fixed, the most likely burial depth and resistivities of the sought 3D bodies are found using a simple line search technique involving rigorous 3D modeling and the results are validated and optimized post facto using seismic depth constraints to locally improve the prediction of the size and resistivities of hydrocarbon-charged or water-bearing sections crucial for prospect derisking, reserve estimation, and well placement.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3