Deep Structure of the Santos Basin, Offshore Brazil From 3D Inversion of magnetotelluric Data

Author:

Benevides A. S.1ORCID,Meju M. A.2ORCID,Fontes S. L.1ORCID,Maurya V. P.3ORCID,Meqbel N. M.1ORCID,Ribeiro P. L.14,La Terra E. F.1ORCID

Affiliation:

1. Department of Geophysics National Observatory Rio de Janeiro Brazil

2. Geomaxo Ltd Lancaster UK

3. CSIR‐National Geophysical Research Institute Hyderabad India

4. Ocean Floor Geophysics Inc Vancouver BC Canada

Abstract

AbstractThe relationship between deep crustal structure and the deformation in the overlying sedimentary wedge in Santos basin, Brazil is not well understood, and the origin and evolution of the salt‐related “Albian Gap (AG)” remain a topic of debate. We investigate the deep structure using three‐dimensional inversion of full tensor marine magnetotelluric (MT) data (of 10−1 to 104 s period bandwidth) from 92 stations along three NW–SE lines in 50–1,700 m water depth, one crossing the Cretaceous hinge line (CHL), AG, and Cabo Frio Fault (CFF). The geological validity of the resulting MT resistivity models was determined using resistivity logs from 11 wells and seismic data. The model shows two regionally persistent electrically conductive layers (C2 and C3) related to key Cenozoic and Cretaceous unconformities in the upper part of the sedimentary wedge. Beneath this wedge, the resistive continental crust is ∼35 km thick across the CHL until the 200 m isobath and thereafter thins rapidly seaward to ∼21 km over a lateral distance of ∼80 km defining a domain of highly extended and faulted crust. Our models show a mantle‐associated basement high and evidence of significant uplift of the lower part of the sedimentary wedge at 100–150 km distance along our central profile which spatially coincides with the AG and a previously proposed Moho high. This implies a mantle‐driven deformation of the crust and basin fill. We propose that mantle flow and magmatism may have played a significant role in the inferred displacement at the AG.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3