Semiautomated seismic horizon interpretation using the encoder-decoder convolutional neural network

Author:

Wu Hao1ORCID,Zhang Bo1ORCID,Lin Tengfei2ORCID,Cao Danping3ORCID,Lou Yihuai1ORCID

Affiliation:

1. The University of Alabama, Department of Geological Science, Tuscaloosa, Alabama, USA.(corresponding author); .

2. CNPC, Department of Middle East E&P, Research Institute of Petroleum Exploration and Development, Beijing, China..

3. China University of Petroleum (East China), School of Geoscience, Qingdao, China..

Abstract

The seismic horizon is a critical input for the structure and stratigraphy modeling of reservoirs. It is extremely hard to automatically obtain an accurate horizon interpretation for seismic data in which the lateral continuity of reflections is interrupted by faults and unconformities. The process of seismic horizon interpretation can be viewed as segmenting the seismic traces into different parts and each part is a unique object. Thus, we have considered the horizon interpretation as an object detection problem. We use the encoder-decoder convolutional neural network (CNN) to detect the “objects” contained in the seismic traces. The boundary of the objects is regarded as the horizons. The training data are the seismic traces located on a user-defined coarse grid. We give a unique training label to the time window of seismic traces bounded by two manually picked horizons. To efficiently learn the waveform pattern that is bounded by two adjacent horizons, we use variable sizes for the convolution filters, which is different than current CNN-based image segmentation methods. Two field data examples demonstrate that our method is capable of producing accurate horizons across the fault surface and near the unconformity which is beyond the current capability of horizon picking method.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3