Elimination of temporal dispersion from the finite-difference solutions of wave equations in elastic and anelastic models

Author:

Amundsen Lasse1ORCID,Pedersen Ørjan2

Affiliation:

1. Equinor Research Centre, Trondheim, Norway and The Norwegian University of Science and Technology, Department of Geoscience and Petroleum, Trondheim, Norway..

2. Formerly Equinor Research Centre, Trondheim, Norway; presently AkerBP, Trondheim, Norway..

Abstract

Time integration of wave equations can be carried out with explicit time stepping using a finite-difference (FD) approximation. The wave equation is the partial differential equation that governs the wavefield that is solved for. The FD approximation gives another partial differential equation — the one solved in the computer for the FD wavefield. This approximation to time integration in numerical modeling produces a wavefield contaminated with temporal dispersion, particularly at high frequencies. We find how the Fourier transform can be used to relate the two partial differential equations and their solutions. Each of the two wavefields is then a time-frequency transformation of the other. First, this transformation allows temporal dispersion to be eliminated from the FD wavefield, and second, it allows temporal dispersion to be added to the exact wavefield. The two transforms are band-limited inverse operations. The transforms can be implemented by using time-step independent, noncausal time-varying digital filters that can be precomputed exactly from sums over Bessel functions. Their product becomes the symmetric Toeplitz matrix with the elements defined through the cardinal sine (sinc) function. For anelastic materials, the effect of numerical time dispersion in a wavefield propagating in a medium needs special treatment. Dispersion can be removed by using the time-frequency transform when the FD wavefield is modeled in a medium with the frequency-modified modulus relative to the physical modulus of interest. In the rheological model of the generalized Maxwell body, the frequency-modified modulus is written as a power series, which allows a term-by-term Fourier transform to the time domain. In a low-frequency approximation, the modified modulus obtains the same form as the physical modulus, and it can be implemented as changes in the unrelaxed modulus and shifts of the relaxation frequencies and their strengths of the physical modulus.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3