Seismic modeling in viscoelastic media

Author:

Carcione José M.1

Affiliation:

1. Osservatorio Geofisico Sperimentale, P.O. Box 2011, 34016 Trieste, Italy, and Geophysical Institute, Hamburg University, Bundesstrasse 55, 2000 Hamburg 13, Germany

Abstract

Anelasticity is usually caused by a large number of physical mechanisms which can be modeled by different microstructural theories. A general way to take all these mechanisms into account is to use a phenomenologic model. Such a model which is consistent with the properties of anelastic media can be represented mechanically by a combination of springs and dash‐pots. A suitable system can be constructed by the parallel connection of several standard linear elements and is referred to as the general standard linear solid rheology. Two relaxation functions that describe the dilatational and shear dissipation mechanisms of the medium are needed. This model properly describes the short and long term behaviors of materials with memory and is the basis for describing viscoelastic wave propagation. This work presents two‐dimensional (2-D) and three‐dimensional (3-D) forward modeling in linear viscoelastic media. The theory implements Boltzmann’s superposition principle based on a spectrum of relaxation mechanisms in the time‐domain equation of motion by the introduction of the memory variables. The algorithm uses a polynomial interpolation of the evolution operator for time integration and the Fourier pseudospectral method for computation of the spatial derivatives. This scheme has spectral accuracy for band‐limited functions with no temporal or spatial dispersion, a very important fact in anelastic wave propagation. Examples are given of how to pose typical problems of viscoelastic forward modeling for geophysical problems in two and three dimensions. A model separating an elastic medium of a viscoelastic medium with similar elastic moduli but different attenuations shows that the interface generates appreciable reflected energy. A second example computes the response of a single interface in the presence of highly dissipative sandstone lenses, properly simulating the anelasticity of direct and converted P‐ and S‐waves. A common‐shot reflection survey over a gas cap reservoir indicates that attenuation significantly affects the bright spot response. 3-D viscoelastic modeling requires twice the memory storage of 3-D viscoacoustic modeling when one dissipation mechanism is used for each wave mode. Simulation in a 3-D homogeneous viscoelastic medium shows how the anelastic characteristics of the different modes can be controlled independently. The result of this simulation is compared to the analytical solution indicating sufficient accuracy for many applications.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3