Detection of reservoir quality using Bayesian seismic inversion

Author:

Gunning James12,Glinsky Michael E.12

Affiliation:

1. CSIRO Petroleum, Ian Wark Laboratory, Victoria, Australia, .

2. BHP Billiton Petroleum, Houston, Texas. .

Abstract

Sorting is a useful predictor for permeability. We show how to invert seismic data for a permeable rock sorting parameter by incorporating a probabilistic rock-physics model with floating grains into a Bayesian seismic inversion code that operates directly on rock-physics variables. The Bayesian prior embeds the coupling between elastic properties, porosity, and the floating-grain sorting parameter. The inversion uses likelihoods based on seismic amplitudes and a forward convolutional model to generate a posterior distribution containing refined estimates of the floating-grain parameter and its uncertainty. The posterior distribution is computed using Markov Chain Monte Carlo methods. The test cases we examine show that significant information about both sorting characteristics and porosity is available from this inversion, even in difficult cases where the contrasts with the bounding lithologies are not strong, provided the signal-to-noise ratio (S/N) of the data is favorable. These test cases show about 25% and 15% improvements in estimated standard deviations for porosity and floating-grain fraction, respectively, for peak S/N of [Formula: see text]. The full posterior distribution of floating-grain content is more informative, and shows enhanced separation into two clusters of clean and poorly sorted rocks. This holds true even in the more difficult test case we examine, where notably, the laminated reservoir net-to-gross is not significantly improved by the inversion process.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3