Sensitivity kernels for seismic Fresnel volume tomography

Author:

Liu Yuzhu12,Dong Liangguo12,Wang Yuwei12,Zhu Jinping12,Ma Zaitian12

Affiliation:

1. Tongji University, State Key Laboratory of Marine Geology, Shanghai, China. .

2. Tongji University, School of Ocean and Earth Science, Shanghai, China. .

Abstract

Fresnel volume tomography (FVT) offers higher resolution and better accuracy than conventional seismic raypath tomography. A key problem in FVT is the sensitivity kernel. We propose amplitude and traveltime sensitivity kernels expressed directly with Green’s functions for transmitted waves for 2D/3D homogeneous/heterogeneous media. The Green’s functions are calculated with a finite-difference operator of the full wave equation in the frequency-space domain. In the special case of homogeneous media, we analyze the properties of the sensitivity kernels extensively and gain new insight into these properties. According to the constructive interference of waves, the spatial distribution ranges of the monochromatic sensitivity kernels in FVT differ from each other greatly and are [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] periods of seismic waves, respectively, for 2D amplitude, 3D amplitude, 2D traveltime, and 3D traveltime conditions. We also have a new understanding of the relationship between raypath tomography and FVT. Within the first Fresnel volume of the dominant frequency, the band-limited sensitivity kernels of FVT in homogeneous media or smoothly heterogeneous media are very close to those of the dominant frequency. Thus, it is practical to replace the band-limited sensitivity kernel with a few selected frequencies or even the single dominant frequency to save computation when performing band-limited FVT. The numerical experiment proves that FVT using our sensitivity kernels can achieve more accurate results than traditional raypath tomography.

Publisher

Society of Exploration Geophysicists

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3