Near-surface velocity inversion and modeling method based on surface waves in petroleum exploration: a case study from Qaidam Basin, China

Author:

Xu Xingrong,Tian Yancan,Wu Dunshi,Xie Junfa,Wang Zedan,Zhang Tao

Abstract

Surface waves are widely used in the study of underground structures at various scales because of their dispersion characteristics in layered media. Whether in natural seismology or engineering seismology, surface wave analysis methods have matured and developed for their respective fields. However, in oil and gas exploration, many data processors still tend to consider surface waves as noise that needs to be removed. To make more people pay attention to the application of surface waves and widely utilize surface waves carrying the near surface information in oil and gas exploration, this paper takes the data processing of LH site in Qinghai, China as an example to apply surface wave analysis methods to oil and gas exploration. We first preprocess and perform dispersion imaging method on the seismic record in the LH site to obtain frequency-phase velocity spectrum with good resolution and signal-to-noise ratio. Then, utilizing clustering algorithms, it automatically identifies and picks dispersion curves. Finally, through a simultaneous inversion algorithm of velocity and thickness, it inverts the dispersion curves and obtain S-wave velocity profiles in the depth range of 0–200 m. The near surface is divided into four zones based on velocity ranges and depth ranges. Additionally, we apply the surface waves inversion results as constraints to first-arrival tomography and obtain objectively accurate P-wave velocity profiles and Poisson’s ratio profiles. The results indicate that by applying surface wave analysis methods, the near surface velocity information carried by surface waves can be extracted, providing near surface velocity models for static correction and migration. At the same time, compared with the surface wave application in engineering seismology, the scale of oil and gas exploration is larger, so that the data processing of surface waves is particularly important, otherwise it will affect the picking of the dispersion curve and inversion.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3